Let's Start With C Programming
- Introduction to C Programming
- Features And Importance
- Standard Library
- Programming in C
- Data Types
- Variables
- Constants
- Storage Classes
- Static Storage Class
- Scope Rules
- Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Bitwise Operators
- Assignment Operators
- Misc Operators
- Operator Precedence in C
- Control Structures
- Program Controls
- Loop Control Statement
- Functions
- Arrays
- Array Definition
- Array initialization
- Static and Automatic Arrays
- Single Dimensional Array
- Multi Dimensional Array
- Array Definition
- Array initialization
- Static and Automatic Arrays
- Single Dimensional Array
- Multi Dimensional Array
- Array Definition
- Array initialization
- Static and Automatic Arrays
- Single Dimensional Array
- Multi Dimensional Array
- Array Definition
- Array initialization
- Static and Automatic Arrays
- Single Dimensional Array
- Multi Dimensional Array
- Array Definition
- Array initialization
- Static and Automatic Arrays
- Single Dimensional Array
- Multi Dimensional Array
- Pointers
- Definitions and Initialization
- Pointers Operators
- Pointer Expression and Arithmetic
- Pointer-Array Relationship
- Array of Pointers
- Definitions and Initialization
- Pointers Operators
- Pointer Expression and Arithmetic
- Pointer-Array Relationship
- Array of Pointers
- Definitions and Initialization
- Pointers Operators
- Pointer Expression and Arithmetic
- Pointer-Array Relationship
- Array of Pointers
- Definitions and Initialization
- Pointers Operators
- Pointer Expression and Arithmetic
- Pointer-Array Relationship
- Array of Pointers
- Definitions and Initialization
- Pointers Operators
- Pointer Expression and Arithmetic
- Pointer-Array Relationship
- Array of Pointers
- Characters and Strings
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Character Handling Library
- String-Conversion Functions
- Standard I/O Functions
- String-Manipulation Functions
- Comparison Functions
- Search Functions
- Memory Functions
- Remaining Functions
- Structures
- typedef
- Unions
- Enumeration Constants
- File Processing
- Preprocessors
- Header Files
- Recursion
- Variable Argument
- Command Line Arguments
- Memory Management
- Typecasting
Goto statement
Although it is well known that there is no need to use jumps or gotos in a well-structured program, every language has some form of goto instruction, and C is no exception.
The general format is:
goto label;
........
label: statement;
goto here;
........
here: x=y;
The label is any alphanumeric name in the same form as variable or function names. Restriction: it is possible to have a goto from within a set of {} to a label either inside or outside the same {}, but:
it is NOT possible to have a goto outside a set of {} to a label inside
the {}. It follows that it is NOT possible to go to a label inside a different function!
Use of the goto statement:
- It is a well-known rule that gotos are a bad thing and should be avoided.
- Indeed, the use of a goto is usually an indication of poorly planned and badly structured code. There are, however, valid uses of a goto! In general, a goto should be used if the alternative is to produce much more complicated code to avoid the goto.
- An example may be a panic exit out of the deeply nested loop and if blocks, where the alternative may be to set up a series of flags that need to be tested at the exit to each block.
- Beware of making excuses for using a goto .!!
JOIN TUTORIALS LINK
Our Newsletter Will Let You Know When Any New
Articles, Tutorials and Video Are Released.
CONTRIBUTE
Copyright © 2025. All Rights Reserved.